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Abstract. In this paper, we consider the inverse minimum spanning tree problem under
the bottleneck-type Hamming distance, where the weights of edges can be modified only
within given intervals. We further consider the constrained case in which the total mod-
ification cost cannot exceed a given upper bound. It is shown that these inverse prob-
lems can be transformed into a minimum node cover problem on a bipartite graph,
and we give a strongly polynomial time algorithm to solve this type of node cover
problems.
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1. Introduction

There are several papers discussing inverse minimum spanning tree prob-
lems under l1 and l∞ norms (distances), see the recent survey paper [2]
and the papers cited therein, and recently [1] proposed to consider inverse
minimum spanning tree problems under Hamming distance. This paper is
a continuation in this direction. The considered problem can be described
as follows:

Let G= (V ,E) be a connected undirected network consisting of the node
set V = {1,2, . . . , n} and the edge set E= {e1, e2, . . . , em}. Each edge ei is
associated with a weight qi and a cost ci �0 for modifying the weight. Let
q= (q1, q2, . . . , qm) denote the weight vector and c= (c1, c2, . . . , cm) denote
the cost vector. Let T 0 be spanning tree of G. We look for a new edge
weight vector w= (w1,w2, . . . ,wm) such that
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(a) T 0 is the minimum weight spanning tree with respect to the weight
vector w,

(b) for each i = 1,2, . . . ,m,−li � wi − qi � ui , where li , ui � 0 are given
lower and upper bounds for reducing and increasing the weight
qi of ei ,

(c) the total modification cost for changing weights of all edges cannot
exceed a given upper bound M >0, i,e.,

∑m
i=1 ciH(wi, qi)�M, where

H(wi, qi)=0 if qi=wi and 1 otherwise,
(d) the maximum modification cost among all edges, i.e.,

max{ciH(wi, qi)|i=1, . . . ,m}, is minimized.

This model can be formulated as follows:

min max
i=1,... ,m

ciH(wi, qi)

s.t.
∑

ei∈T 0

wi �
∑

ej∈T
wj , for any spanning tree T of G;

− li �wi−qi �ui, 1� i �m;
m∑

i=1

ciH(wi, qi)�M. (1)

which is different from the problem considered in [1], where we look for a
new edge weight vector w such that

∑m
i=1 ciH(wi, qi) is minimized with the

above constraints (a) and (b).
In Section 2, we will consider the standard case of problem (1) in which

all li and ui are nonnegative and finite, but M=+∞. In Section 3, we will
consider the constrained case in which in addition to li and ui M is also
nonnegative and finite. We will show that the two cases can both be solved
by strongly polynomial time algorithms.

Before we discuss the two cases, we introduce some useful notations. For
a given spanning tree T 0, we refer to the edge set consisting of the edges
in T 0 as the set of tree edges, and the set of other edges as the set of
non-tree edges, which are denoted by E0 and E0, respectively. For each
ej ∈E0,E0 ∪ {ej } contains a unique cycle, and we denote by Pj all edges
in this cycle except ej . For a given vector α= (α1, α2, . . . αm) define φ(α)=
maxi=1,...,m ciH(αi,0) and η(α)=∑m

i=1 ciH(αi,0).

2. The Standard Case

By setting αr = |wr − qr |, r = 1,2, . . . ,m, the problem considered in [1] is
equivalent to
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min
α

η(α)

s.t. qi−αi �qj +αj , for each ej ∈E0 and ei ∈P ′j ;
0�αi � li , ei ∈E0;
0�αj �uj , ej ∈E0, (2)

where P ′j ={ei |ei ∈Pj and qi >qj }. Hence the standard case of our problem
is equivalent to

min
α

φ(α)

s.t. qi−αi �qj +αj , for each ej ∈E0 and ei ∈P ′j ;
0�αi � li , ei ∈E0;
0�αj �uj , ej ∈E0. (3)

Similarly, to obtain an algorithm for solving (3) in polynomial time, we still
construct a bipartite graph G′ = (N,A)= (E0∪E0,A) with respect to the tree
T 0 as follows: The node set N=E0∪E0, i.e., each edge of E corresponds to
a node of G′, either on the ‘left’ side of G′ if the edge is in E0, or on the
‘right’ side otherwise, and the edge set A={(ei, ej )|ej ∈E0and ei ∈P ′j }. We
further define the weight of each node ei of G′as ci .

Noting that problems (2) and (3) have the same constraints, and as
shown in [1], we conclude that they have a feasible solution if and only if
for each (ei, ej )∈A, we have qi−qj � li+uj .

In order to solve (3), we first need to find the nodes in G′ whose weights
must be changed in every feasible solution. Define Z= {ei |αi �= 0 in every
feasible solution α= (α1, α2, · · · , αm)}.

LEMMA 2.1. [1] Suppose problem (3) is feasible. (i) For each ei ∈E0, ei ∈
Z if and only if there exists ej ∈E0 such that (ei, ej )∈A and qi−qj >uj . (ii)
For each ej ∈E0, ej ∈Z if and only if there exists ei ∈E0 such that (ei, ej )∈A

and qi−qj > li .

Lemma 2.1 tells us how to determine Z. With the above analysis, we fur-
ther normalize the bipartite graph G′ in the following way: We start with
Z=∅. Check every edge (ei, ej ) in G′ to see whether the condition in one
of the above Cases 1 and 2 satisfies. If yes, modify Z (add ei or ej or
both to Z) and delete the edge (ei, ej ) from G′. After this process, for each
ei ∈Z, delete all edges in G′ which are incident to the node ei as well as
the node ei itself. In this way, we reduce G′ to G′′, where G′′ = ((E0\Z)∪
(E0\Z),A′) and A′ = {(ei, ej )|(ei, ej )∈A,ei /∈Z and ej /∈Z}.

THEOREM 2.1. Suppose problem (3) has a feasible solution. Let C∗ be a
minimum bottleneck-weight node cover of G′′, i.e., C∗ is a node cover of G′′
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such that cb(C∗)=min{cb(C)|C is a node cover of G′′}, where cb(C) is
the maximum weight of the elements in C. Define α′ = (α′1, α

′
2, . . . , α′m) as

α′i=
⎧
⎨

⎩

li , if ei ∈ (C∗ ∪Z)∩E0,

ui, if ei ∈ (C∗ ∪Z)∩E0,

0, if ei /∈ (C∗ ∪Z),

then α′ is an optimal solution of problem (3) with the minimum objective
value cb(C∗ ∪Z).

Proof. As shown in [1], if C∗ is a minimum sum-weight node cover of
G′′, then α′ defined in the theorem is the optimal solution of problem (2).
Noting again that problems (2) and (3) have the same feasible solutions,
hence by a similar argument we can obtain the result.

We now describe an approach for obtaining C∗. As we do not see any
reference giving explicitly an algorithm for the purpose, here we present an
algorithm in detail.

ALGORITHM A1. Step 1. Let C = ∅, sort the nodes of the current
graph (it is G′′ initially) according to the non-decreasing order of node
weights.

Step 2. Find the node ei with the minimum weight and a positive degree
in the current graph, set C :=C∪{ei}, and delete the node ei and all edges
incident to it in the current graph.

Step 3. Repeat the process in Step 2 until the edge set of the current
graph is empty. Take C∗ =C and stop.

Next we show that the set C∗ resulted from algorithm A1 is indeed a
minimum bottleneck-weight node cover of G′′. In fact, it is easy to know
that C∗ is a node cover of G′′. We further show that C∗ has the mini-
mum bottleneck-weight as follows. Denote cik =max{ci |ei ∈C∗}, and let C ′

be another node set of G′′ such that max{ci |ei ∈C ′}< cik . Then we know
that eik /∈C ′. On the other hand, according to algorithm A1, there is a node
eir which is adjacent to eik such that cir � cik (otherwise, it is easy to get
that eik /∈C∗, a contradiction). cir � cik implies that eir /∈C ′ and thus both
end nodes of the edge (eik , eir ) are not covered by C ′. So, C ′ cannot be a
node cover of G′′ and we have finished the proof.

It is clear that Step 1 takes O(m log m) time and Steps 2 and 3 take
O(mn) time. Hence the algorithm runs in O(m log m+mn)=O(mn) time.
Now we are able to present the following algorithm for solving problem (3)
with a time complexity O(mn).
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ALGORITHM A2. Step 1. For each ej ∈E0, determine first Pj and then P ′j .
Step 2. Then construct a bipartite graph G′ = (E0 ∪E0,A), where A=
{(ei, ej )|ej ∈E0 and ei ∈P ′j }, and define the weight of each node ei as ci .
If there exists some (ei, ej )∈A such that qi−qj > li+uj , then the problem
is infeasible, stop. Otherwise go to step 3.

Step 3. Obtain Z by Lemma 2.1 and G′′ by normalizing G′.
Step 4. Run algorithm A1 to get a minimum bottleneck-weight node

cover C∗ of G′′.
Step 5. Output an optimal solution α′ = (α′1, α

′
2, . . . , α′m), where α′ is

specified in Theorem 2.1.

3. The Constrained Case

By the same notations as what used in Section 2, problem (1) is clearly
equivalent to

min
α

φ(α)

s.t. qi−αi �qj +αj , for each ej ∈E0 and ei ∈P ′j ;
0�αi � li , ei ∈E0;
0�αj �uj , ej ∈E0;
m∑

i=1
ciH(αi,0)�M.

(4)

It is trivial that problem (4) has a feasible solution if and only if prob-
lem (2) has a feasible solution with the objective function value not greater
than M. The main idea of our algorithm for solving problem (4) is as fol-
lows: First, note that problems (3) and (4) have the same objective function
and the first three groups of constraints, whereas problem (4) has one more
constraint. Hence if we denote by α′ and α∗ the optimal solutions of prob-
lems (3) and (4), respectively, it must have φ(α′) � φ(α∗). In other words,
φ(α′) can be taken as a lower bound for the optimal value φ(α∗). Clearly,
the values φ(α′) and φ(α∗) are actually costs of two edges, and hence can
be expressed as ci and cj for two indexes i and j .

Second, if ᾱ is a minimum solution of problem (2) with the objective
value η(ᾱ)�M, then as this ᾱ is feasible to problem (4), φ(ᾱ) must be an
upper bound for the minimum value φ(α∗) of problem (4). Let φ(ᾱ)= c�

for some � between 1 and m. Then φ(α′) � φ(α∗) � φ(ᾱ). In other words,
φ(α∗) must be one of the several cost values in the interval [ci, c�].

Third, in order to determine the minimum cost of problem (4) from the
interval [ci, c�] quickly, we may use the bisection method. Take a cost value,
say ck, which is in the quite middle of the above interval. Then we ask: if
the minimum value of problem (4) is not greater than ck? If yes, the search
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interval can be reduced to [ci, ck], otherwise to [ck, c�]. And this question
can be answered by computing problem (2) with the revision that if the
cost cτ of edge eτ is greater than ck, then ατ must be 0 (i.e., let the cor-
responding lτ or uτ in the last two groups of constraints in (2) be 0), and
then checking if the minimum value of (2) is not greater than M. Repeat-
ing the process several times, the interval is reduced to a single cost value
which is the optimal value of (4).

ALGORITHM A3. Step 1. Let c0=−1, rearrange the costs c0, c1, c2, . . . , cm

in an increasing order. Then we express their different values as: −1= cj1 <

cj2 < · · ·<cjk
.

Step 2. Call algorithm A2 to solve problem (3). If the algorithm finds
problem (3) infeasible, then output that problem (4) is infeasible, stop;
otherwise let the optimal solution of (3) be α′ and find the index t such
that cjt+1=φ(α′).

Step 3. Solve problem (2) and let the optimal solution be ᾱ with objec-
tive value η(ᾱ). If η(ᾱ) > M, then output that problem (4) is infeasible,
stop; otherwise ᾱ is a feasible solution of problem (4) with the objective
value φ(ᾱ). Find the index t such that cjt

=φ(ᾱ).
Step 4. If t− t=1, then output that ᾱ is an optimal solution of problem

(4) with minimum cost φ(ᾱ), stop; otherwise, we have t − t > 1, and go to
Step 5.

Step 5. Let t ′ :=	 t+t

2 
. Solve problem (2) with the restriction that

li=0, if ei ∈E0 and ci >cjt ′ , (5)

ui=0, if ei ∈E0 and ci >cjt ′ . (6)

If the restricted problem (2) is infeasible, set t← t ′ and return to Step 4;
otherwise let the optimal solution of the restricted problem (2) be α̂ and
the minimum value be η(α̂), then go to Step 6.

Step 6. If η(α̂) � M, then t← t ′, ᾱ← α̂, φ(ᾱ)← φ(α̂); otherwise t← t ′.
Return to Step 4.

THEOREM 3.1. Algorithm A3 solves problem (4) with a time complexity
O(n3m log m).

Proof. If the algorithm Stops at Step 2 or 3, then clearly problem (4) is
infeasible. We next consider the case that problem (4) is feasible. We des-
ignate computations starting from Step 4 until switching back to the next
Step 4 as one iteration, and prove that the algorithm can obtain the opti-
mal solution of problem (4) by at most 	log m
 iterations.
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By the introduction before proposing the algorithm, we know that the
optimal value of problem (4) is one of the t − t distinct cost values in the
initial interval (cjt

, cjt
], where t and t are defined in Steps 2 and 3, i.e.,

before entering the first iteration. In the following we show that this con-
clusion is true for any cjt

and cjt
obtained in any iteration. To prove this

fact we should consider the following three cases in which the search inter-
val (cjt

, cjt
] is reduced.

Case 1. The algorithm finds in Step 5 that problem (2) with the restrictions
(7) and (8) is infeasible. We show that in this case for every feasible solu-
tion γ = (γ1, γ2, . . . , γm) of (2), φ(γ )>cjt ′ . In fact, if there exists a feasible
solution γ satisfying φ(γ )�cjt ′ , that is, for each 1� i �m, ciH(γi,0)�cjt ′ ,
which implies that if ci > cjt ′ , then γi = 0. Thus γ is a feasible solution of
the restricted problem (2), a contradiction. Hence for every feasible solu-
tion γ of (2), φ(γ )>cjt ′ . It means that the optimal value of problem (4) is
greater than cjt ′ , and hence must be in the interval (cjt ′ , cjt

]. As in this case
by Step 5, we let the next t equal t ′, it guarantees that the optimal value
of (4) is in the next search interval (cjt

, cjt
].

Case 2. The restricted problem (2) has an optimal solution α̂ and η(α̂) >

M. This means that for any α satisfying the constraints of problem (2), if
it also makes

αi=0 whenever ci >cjt ′ , (7)

then we must have
∑

ciH(αi,0)>M. As (9) is equivalent to φ(α)�cjt ′ , the
above conclusion implies that for every feasible solution γ to problem (4),
it must have φ(γ )>cjt ′ . Therefore, the optimal value of (4) must be in the
interval (cjt ′ , cjt

], i.e., in the next interval (cjt
, cjt

] as in this case, we let t= t ′

(see Step 6).

Case 3. The restricted problem (2) has an optimal solution α̂ and η(α̂) �
M. This means that α̂ satisfies all constraints of problem (4), and φ(α̂)�
cjt ′ . So, the optimal value of (4) must be in the interval (cjt

, cjt ′ ], i.e., in the
next interval (cjt

, cjt
] as in this case by Step 6, we let t= t ′.

Combining the above three cases, we conclude that in each iteration the
optimal value of problem (4) is one of the t − t distinct cost values in the
interval (cjt

, cjt
]. As we know, the bisection method guarantees that after

at most 	log m
 iterations, the search interval (cjt
, cjt

] must satisfy t− t=1,
i.e., there is only one cost value in the interval (cjt

, cjt
], which is just cjt

.
The corresponding weight adjustment vector is ᾱ which is feasible. So, ᾱ is
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an optimal solution of problem (4), and the optimal value is φ(ᾱ)=cjt
. So

the validity of the algorithm is proved.
It is clear that Step 1 takes O(m log m) time, Step 2 takes O(mn) time,

Step 3 takes O(n3m) time, and Steps 4–6 take O(n3m) time. As the algo-
rithm iterates for at most O(log m) times, it runs in O(n3m log m) time in
the worst-case and hence is a strongly polynomial time algorithm.
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